Phase Relations in the $\mathrm{TIX}-\mathrm{Tl}_{2}$ Se Systems ($X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) and the Crystal Structure of $\mathrm{T}_{5} \mathrm{Se}_{2} \mathbf{I}$

R. BLACHNIK and H. A. DREISBACH
Anorganische Chemie, FB Chemie-Biologie der Universität-GH-Siegen, D. 5900 Siegen, West Germany

Received May 11, 1983; in revised form October 24, 1983

Abstract

Each of the quasibinary systems $\mathrm{TlCl}-\mathrm{Tl}_{2} \mathrm{Se}, \mathrm{TlBr}-\mathrm{Tl}_{2} \mathrm{Se}$, and $\mathrm{TlI}-\mathrm{Tl}_{2} \mathrm{Se}$ contains a region of solid solution up to 18 mole $\% \mathrm{Tl}_{2} \mathrm{Se}$, which decomposes peritectically. The mixed crystals can be explained by a statistical substitution of Se by two I atoms on the fourfold sites of the $\mathrm{Tl}_{2} \mathrm{Se}$ lattice. Compounds of the type $\mathrm{Tl}_{5} \mathrm{Se}_{2} X$ were derived by complete substitution. Crystals of $\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{I}$, suitable for a crystal structure determination, were grown by the Bridgman technique. $\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{I}$ is tetragonal, $I 4 / \mathrm{mcm} ; a=$ $866.3 \mathrm{pm}, c=1346.3 \mathrm{pm}, Z=4$. The structure is an ordered variation of the $\mathrm{In}_{5} \mathrm{Bi}_{3}$ structure and isopuntal to the $\mathrm{Cr}_{5} \mathrm{~B}_{3}$ type. The structure is formed basically by layers of $\mathrm{Tl}_{2} \mathrm{Sc}$, in which strings of TII are introduced. The compounds $\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{Br}(a=861.1 \mathrm{pm}, c=1292.2 \mathrm{pm})$ and $\mathrm{Tl}_{5} \mathrm{Se} \mathrm{e}_{2} \mathrm{Cl}(a=856.5 \mathrm{pm}, c$ $=1273.3 \mathrm{pm}$) have probably very similar structures. A tendency for immiscibility in the $\mathrm{Tl} X-\mathrm{Tl}_{2} \mathrm{Se}$ systems is shown by the existence of a miscibility gap in the system $\mathrm{TlCl}-\mathrm{Tl}_{2} \mathrm{Se}$ and by the endothermic enthalpies of mixing in the system $\mathrm{TlBr}^{2}-\mathrm{Tl}_{2} \mathrm{Se}$. In the $\mathrm{TlI}-\mathrm{Tl}_{2} \mathrm{Se}$ system the compound $\mathrm{Tl}_{6} \mathrm{Se}_{4} \mathrm{I}$ system was encountered.

Introduction

In recent publications (1,2) on the phase diagrams of thallous halide-thallous sulfide systems several compounds of the composition $\mathrm{Tl}_{6} X_{4} Y(X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, Y=\mathrm{S})$ were described. Their structure is based on the TlCl structure (CsCl type) in which $1 / 5$ of the Tl and X atoms are replaced by $\mathrm{Tl}_{2} \mathrm{~S}$ units in a regular manner. The coordination of the anions (X, S) is very similar to the coordination of Cl in TlCl and S in $\mathrm{Tl}_{2} \mathrm{~S}$, respectively.

Stasova and Vainshtein (3) have shown that the structure of $\mathrm{Tl}_{2} \mathrm{Se}$ is formed by a sequence of Tl and Se layers with channels along the fourfold axis which are partly filled by $\mathrm{Tl}_{2} \mathrm{Se}$ groups. In thallous halidethallous sulfide mixtures the structure of
the intermediate compound $\mathrm{T}_{6} X_{4} Y$ exhibited a tendency to retain the coordination of the pure components. In this work the phase diagrams of thallous halide-thallous selenide were determined because it was expected that the $\mathrm{Tl}_{2} \mathrm{Se}$ groups in the channels of the $\mathrm{Tl}_{2} \mathrm{Se}$ structure might be exchanged by $\mathrm{Tl} X$.

Experimental

Thallous selenide was prepared from the proper amounts of high purity elemental solids (Tl 99.99% Preussag; Se 99.999%, Retorte) by encapsulating them under vacuum in quartz ampoules, melting in a flame, and annealing at 600 K for 1 month. The melting point of the product $654 \pm 4 \mathrm{~K}$ is identical with that reported in the literature
(4). The phase, crystallizing in a tetragonal lattice, has lattice constants of $a=856.2(2)$ and $c=1249.0(5) \mathrm{pm}$; the c-axis considerably lower than the value reported by Stasova and Vainshtein (3) ($a=854$ and $c=$ $1270(4) \mathrm{pm})$. The thallous halides TlCl , TlBr and TlI (Merck, Optipur) were used after drying at 400 K and 10^{-2} Torr. The purity was checked by difference thermal and by X-ray analysis, $\mathrm{Tl}_{2} \mathrm{Se}$ was additionally examined by metallographic methods.

The powders were mixed in the desired proportions in steps of 2 to $5 \mathrm{~mole} \%$ and the mixtures sealed under vacuum in quartz ampoules. The mixtures were molten, well mixed by shaking, and then annealed for periods of between 1 week and 3 months. The annealing temperatures were chosen from preliminary experiments and were usually about $20-30 \mathrm{~K}$ below the solidus temperatures.

The apparatus and the method $(5,6)$ of the difference thermal analysis have already been described. The accuracy of the liquidus temperatures is $\pm 5 \mathrm{~K}$, that of the three-phase equilibria lines $\pm 2 \mathrm{~K}$. X-ray data of powders were measured with a Guinier-4 (radiation $\mathrm{Cu} K \alpha_{1}$) or a HuberGuinier camera (radiation $\mathrm{Cr} K \alpha_{1}$) using SiO_{2} as internal standard. Single crystal data were collected by a precession camera. Temperature-dependent X-ray data were obtained by means of a Guinier-Simon camera (Enraf Nonius, radiation $\mathrm{Cu} K \alpha_{1}$). In the latter experiments a heating rate of $5-10 \mathrm{~K} / \mathrm{hr}$ was used. Metallographic and quantitative analyses were carried out with a microprobe (Superprobe 733, Jeol). Some enthalpies of mixing were measured in a high-temperature calorimeter (Calvettype, Sctaram) at 800 K . All samples in the systems were subjected to thermal analysis and X-ray and metallographic studies.

Results

The system $\mathrm{TlCl}-\mathrm{Tl}_{2} \mathrm{Se}$ is presented in

Fig. 1. The phase diagram $\mathrm{TlCl}-\mathrm{Tl}_{2} \mathrm{Se}$.

Fig. 1. A eutectic temperature of $689 \pm 2 \mathrm{~K}$ and a eutectic composition of 95 ± 2 mole $\%$ TlCl were observed. At the $\mathrm{Tl}_{2} \mathrm{Se}$ corner of the system the solid solubility of the TlCl in

TABLE I
X-Ray Data of $\mathrm{Tl}_{5} \mathrm{Se}_{2} X$ (Estimated Intensities) ${ }^{\boldsymbol{a}}$

$\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{Cl}$		$\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{Br}$		$\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{I}$	
$d_{\text {obs }}$	$I_{\text {est }}$	$d_{\text {obs }}$	$I_{\text {est }}$	$d_{\text {obs }}$	$I_{\text {est }}$
6.37	1	4.43	2	4.53	2
6.06	2	3.69	4	3.72	3
4.39	3	3.59	1	3.06	3
3.67	4	3.23	1	2.95	3
3.55	2	3.05	3	2.93	5
3.28*	2	2.87	5	2.74	5
3.18	2	2.86	1	2.66	3
3.03	3	2.72	5	2.37	2
2.98*	2	2.58	2	2.27	2
2.84	5	2.35	2	2.24	2
2.82	2	2.22	1	2.21	2
2.73	2	2.15	4	2.17	2
2.71	5	2.09	3	2.12	2
2.65*	2	2.03	2	2.04	2
2.56	3	1.88	3	1.94	3
2.43*	2	1.79	3	1.90	2
2.33	2	1.72	2	1.82	3
2.14	3	1.69	2	1.51	3
2.07	3	1.67	3		
2.02	3	1.61	1		
1.87	2	1.59	1		
		1.52	1		
		1.50	3		

[^0]$\mathrm{Tl}_{2} \mathrm{Se}$ occurs up to 18 mole\% TlCl . The solid solution decomposes in a peritectic reaction at 684 K . On cooling, the two liquids in the miscibility gap between 20 and 85 mole $\% \mathrm{TlCl}$ react to produce the compound $\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{Cl}$. This phase crystallizes in a tetragonal lattice with the lattice constants $a=856.5$ (1) and $c=1273.3$ (2) pm. The Xray pattern (Table I) is very similar to that of pure $\mathrm{Tl}_{2} \mathrm{Se}$.

The phase relations of mixtures of TlBr with $\mathrm{Tl}_{2} \mathrm{Se}$ are shown in Fig. 2. The eutectic is located at $705 \pm 2 \mathrm{~K}$ and 90 ± 2 mole $\%$ TlBr . The $\mathrm{Tl}_{2} \mathrm{Se}$ solid solutions from 0 to 18 mole $\%$ decompose in a peritectic reaction at $72 \pm 2 \mathrm{~K}$. The phase $\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{Br}$ has a melting point of $745 \pm 5 \mathrm{~K}$. The structure is tetragonal and isotypic with $\mathrm{Tl}_{5} \mathrm{Se}_{3}$, with lattice constants of $a=861.1$ (1) and $c=$ $1292.2(2) \mathrm{pm}$. The very flat liquidus curve is associated with the tendency for immiscibility in the liquid state which was also detected by calorimetric experiments. Liq-uid-liquid mixing experiments in a high-temperature calorimeter at 800 K showed that the enthalpies of mixing were endothermic, with a maximum value of approximately $2 \mathrm{~kJ} \mathrm{~mole}^{-1}$. These results indicate the tendency of liquid immiscibility. However, a miscibility gap could not be verified by metallographic examination. Except for the missing miscibility gap, the

Fig. 2. The phase diagram $\mathrm{TlBr}-\mathrm{Tl}_{2} \mathrm{Se}$.

Fig. 3. The phase diagram $\mathrm{TlI}-\mathrm{Tl}_{2} \mathrm{Se} . \Delta$, Mixed crystals; \square, two phases; $\square, \mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{I}$.
system $\mathrm{TlBr}-\mathrm{Tl}_{2} \mathrm{Se}$ closely resembles that of $\mathrm{TlCl}-\mathrm{Ti}_{2} \mathrm{Se}$.

The system $\mathrm{TlI}-\mathrm{Tl}_{2} \mathrm{Se}$, described previously (2), is shown in Fig. 3. This system is again very similar to the two systems already described. In addition, the compound $\mathrm{Tl}_{6} \mathrm{SeI}_{4}$ appears in this system ($P 4 / m n c, Z$ $=2, a=917.8(3)$ and $c=967.5(1) \mathrm{pm})$.

Figure 4 shows the variation of the lattice parameter c for the three $\mathrm{Tl}_{2} \mathrm{Se}$ solid solutions. The a-axis is not influenced by the formation of the mixed crystal (substitution of one selenium ion by two halide ions),

Fig. 4. Concentration dependence of the lattice parameter c in the $\mathrm{Tl}_{2} \mathrm{Se}$-based solutions. $\mathrm{x}, \mathrm{Tl}_{2} \mathrm{Se}+\mathrm{TII}$; $\mathrm{O}, \mathrm{Tl}_{2} \mathrm{Se}+\mathrm{TlBr} ; \square, \mathrm{Tl}_{2} \mathrm{Se}+\mathrm{TlCl}$.

TABLE II
Atomic Coordinates and Anisotropic Temperature Coefficients $U_{i j}$ For $\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{I}$

Atom		X	Y	Z	$U_{1.1}$	$U_{2.2}$	$U_{3.3}$	$U_{\mathrm{t} .2}$	$U_{\mathrm{t} .3}$	$U_{2.3}$
$\mathrm{Tl}(1)$	$4 c$	0	0	0	$0.017(2)$	$0.017(2)$	$0.020(1)$	0	0	0
$\mathrm{Tl}(2)$	$16 l$	$0.1437(0)$	$0.6437(0)$	$0.3593(1)$	$0.0232(9)$	$0.0232(9)$	$0.0228(7)$	$0.0007(8)$	$0.006(1)$	0
I	$4 a$	0	0	0.25	$0.021(3)$	$0.021(3)$	$0.015(2)$	0	0	0
Se	$8 h$	$0.162(1)$	$0.662(1)$	0	$0.012(3)$	$0.012(3)$	$0.032(3)$	0	0	0

whereas the c-axis increases with increasing halide concentration and increasing size of the halide ion.

Determination of the Structure of $\mathbf{T l}_{5} \mathrm{Se}_{2} \mathbf{I}$

Single crystals of the compound could be obtained in the region of primary crystallization by the Bridgman technique. The crystals with metallic luster crystallize in a tetragonal, body-centered lattice with the space group $14 / \mathrm{mcm}$. The cell constants, obtained by least-square calculations from measurements on a Huber-Guinier camera, are $a=866.3(1) \mathrm{pm}, c=1346.3(1) \mathrm{pm}$, with $Z=4$.

Intensity measurements for the structure determination were made at a CAD-4 (Enraf-Nonius) automatic diffractometer, using Mo $K \alpha_{1}$ radiation. Independent reflections (670) were measured to an upper limit of $2 \theta=35^{\circ}, 399$ reflections with $I \geq 2 \sigma_{I}$ were used for the calculations.

The structure was solved by application

Fig. 5. The unit cell of $\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{I} .-\mathrm{I} ; \odot, \mathrm{Tl}(1) ; \circ$, Tl(2); O, Se.
of the SDP program-packet (Enraf). The refinement using anisotropic temperature coefficients and an empirical absorption correction converges to $R=0.087$. Table II contains the atomic parameters together with their standard deviations.

Description of the Structure

The unit cell of $\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{I}$ is shown in Fig. 5. The structure can be regarded as formed by the successive stacking of $3^{2} 434$ nets of atoms (Fig. 6) and networks containing squares. Most of the Tl atoms- $\mathrm{Tl}(2)$-are arranged in this type of nets. To achieve a better packing, successive layers are translated by half of the base diagonal of the unit cell. In $\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{I}$ the sequence of $\mathrm{Tl}(2)$ layers is $\mathrm{AA}^{\prime} \mathrm{A}^{\prime} \mathrm{A}$ at $z=0.1407,0.3593,0.6407$, and 0.8593. The A and A^{\prime} nets generate a double layer of metal atoms consisting of tetrahedra linked by edges or corners. The structure also contains $3^{2} 434$ nets of Se atoms in A^{\prime} orientation at $z=0$ and at $z=0.5$ in A orientation which are slightly displaced relatively to the $\mathrm{Tl}(2)$ nets. The squares of these nets are centered by a quadratic net of $\mathrm{Tl}(1)$ atoms located over the middle and the corners of the unit cell, while the I atoms form a net of squares at z $=0.25$ and $z=0.75$. The stacking sequence is thus $\underline{A}_{1}^{\prime} \mathrm{A}_{1} \mathrm{~A}^{\prime} \underline{A}_{1} \mathrm{~A}^{\prime} \underline{\mathrm{A}} \mathrm{A}(9),{ }^{1}$ which places the $\mathrm{Tl}(1)$ atoms in an octahedral surrounding, with four equatorial Se atoms at 323.3

[^1]

Fig. 6. The $3^{2} 434$ net of Se atoms in $\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{I}\left(\Lambda^{\prime}\right.$ orientation). The A orientation is achieved by translating the A^{\prime} net by a half of the base diagonal of the unit cell. The quadratic holes in this net are centered by the atoms of the $4^{4} \mathrm{Tl}(1)$ net. $\bigcirc, \mathrm{Se} ; \odot, \mathrm{Tl}(1)$.
pm and two axial I atoms at 336.3 pm . The I atoms are filling the cubic antiprismatic holes between successive $\mathrm{Tl}(2)$ layers, and have a $2+8$ coordination of two $\mathrm{Tl}(1)$ at 336.3 pm and $8 \mathrm{Tl}(2)$ atoms at 362.6 pm in this form of antiprism, a coordination which to date has not been reported in chalcogenide halides.

An eightfold coordination is found around the Se atoms. Six $\mathrm{Tl}(2)$ neighbors are situated at the corners of a distorted trigonal prism and two outside the square faces of this prism. A Se atom lying above the third square face at a distance of 395 pm , is out of range of bonding interactions. The coordination of the $\mathrm{Tl}(2)$ atoms is irregular, with three Se, two I, and one $\mathrm{Tl}(2)$ atom as nearest neighbors. The latter atom, with a bond distance of 350 pm , points to a tendency for the formation of Tl pairs in this structure. The irregular shape of the coordination polyhedron-an extremely distorted octahedron-may be due to the nonbonding electron pair of the Tl^{+}ion.

The interatomic distances are listed in Table III. The table shows that the $\mathrm{Tl}-\mathrm{I}$ and Tl -Se distances agree quite well with those observed in the pure components. A consideration of the bond lengths suggests that the $\mathrm{Tl}-\mathrm{Se}$ and $\mathrm{Tl}-\mathrm{I}$ bonds are shorter than expected for pure ionic bonds ($\mathrm{Tl}-\mathrm{Se}$
(ionic) $348 \mathrm{pm}, \mathrm{Tl}-\mathrm{I}$ (ionic) 370 pm), indicating strong covalent contributions to bonding in this compound. The Tl-I distance of 336 pm and the $\mathrm{Tl}-\mathrm{Se}$ distance of 303 pm are consistent with largely covalent bonding. The latter short distances are arranged in such a way that $\mathrm{Tl}_{2} \mathrm{Se}$ "molecules' can be recognized in the lattice. The shortest $\mathrm{Tl}-\mathrm{Tl}$ distance found in this structure is comparable to the $\mathrm{Tl}-\mathrm{Tl}$ distances found in $\mathrm{Tl}_{2} \mathrm{~S}$ (10) 362 pm , TlSe (11) 350 pm , and $\alpha-\mathrm{Tl}$ (12) 345 pm .

Discussion

From the very similar diffraction patterns of $\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{I}$ and $\mathrm{Tl}_{2} \mathrm{Se}$ we had already concluded (2) that the structure of $\mathrm{Ti}_{5} \mathrm{Se}_{2} \mathrm{I}$ is a ternary variant of the $\mathrm{Tl}_{2} \mathrm{Se}$ lattice. The space group of the latter phase is, according to Stasova and Vainshtein (3), P4/ncc or $P 4 / n$, according to Man et al. (13), $P 4 / n$ with $Z=10$. The cell dimensions reported by both authors differ considerably in the c axis, namely, $c=1270 \mathrm{pm}$ (3) and 1238 pm (13) respectively. The homogeneity range of $\mathrm{Tl}_{2} \mathrm{Se}$ is rather broad, so that this deviation may be explained by different composi-

TABLE III
Interatomic Distances in Picometers
(Estimated Accuracy between 0.1 and 0.3 pm)

	In $\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{I}$	In $\mathrm{T}_{2} \mathrm{Se}$ [3]	In α-TII[7,8$]$
Tl(1)-4Se	323.3	322	
-2I	336.3		336
-871(2)	381.7		
$\mathrm{Tl}(2)-1+2 \mathrm{Se}$	325.0,303.3	329	
-2I	362.6		349,383
$-2 \mathrm{Tl}(1)$	381.7		
$-1 \mathrm{Tl}(2)$	350.7	348	
$\mathrm{I}-2 \mathrm{Tl}(1)$	336.3	$280{ }^{\text {a }}$	336
-8Tl(2)	362.6	328	349,383
$\mathrm{Se}-2+4 \mathrm{Tl}(2)$	303.3,325.1	319,334,339	
-Tl(1)	323.3	322	
$-1 \mathrm{Se}$	395.4	385	

[^2]tions of the samples, especially as Stasova worked with thin-film samples.

In $\mathrm{Tl}_{2} \mathrm{Se}$ two Se atoms at $z=0$ and $z=1 /$ 2 occupy randomly four-fold sites (3). The remaining vacant sites can be filled by additional Se atoms up to the limit of $\mathrm{Tl}_{5} \mathrm{Se}_{3}$, which explains the homogeneity range of this compound.
$\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{I}$ is of the same structural type, which can be derived from the $\mathrm{Tl}_{2} \mathrm{Se}$ structure by substituting all randomly distributed Se ions by I ions. In order to preserve electroneutrality each Se ion must be replaced by two I ions. The composition is thus altered from $\mathrm{Tl}_{20} \mathrm{Se}_{8} \mathrm{Se}_{2}\left(\mathrm{Tl}_{2} \mathrm{Se}\right.$ with $\left.Z=10\right)$ to $\mathrm{Tl}_{20} \mathrm{Se}_{8} \mathrm{I}_{4}\left(\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{I}\right.$ with $\left.Z=4\right)$. The filling of the positions between the $\mathrm{Tl}(2)$ layers increases the symmetry; the space group changes from $P 4 / n\left(\mathrm{Tl}_{2} \mathrm{Se}\right)$ to $I 4 / \mathrm{mcm}$. The new unit cell in which the lattice is represented as a body-centered tetragonal lattice, is generated from the unit cell of $\mathrm{Tl}_{2} \mathrm{Se}$ by translation of the origin by $y=1 / 2$ and z $=1 / 4$ (Fig. 7).

The structure of the phases $\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{Cl}$ and $\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{Br}$ is similarly based on the $\mathrm{Tl}_{2} \mathrm{Se}$ lattice. Due to the near-equality in size of the Cl^{-}and Br^{-}as compared to Se^{2-} ions, the $\mathrm{Tl}_{2} \mathrm{Se}$ structure is retained; these halide

Fig. 7. Relation between unit cells of $\mathrm{Tl}_{2} \mathrm{Se}$ and $\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{I}$. -, $\mathrm{Tl}_{2} \mathrm{Se}$ cells. -, $\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{I}$ cell.
ions fit also into the cubic antiprismatic holes between the layers of the selenide structure. The compound $\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{Cl}$ was detected by the additional reflections in the diffraction pattern of $\mathrm{Tl}_{2} \mathrm{Se}$ (Table I), which could not be indexed with the extinction conditions for the space group $P 4 / n c c$ $\left(\mathrm{Tl}_{2} \mathrm{Se}\right)$. We assume that $\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{Cl}$ crystallizes in space group $P 4 / n$ similar to that of $\mathrm{Tl}_{5} \mathrm{Se}_{3}$. The reflections could not be observed for the compound $\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{Br}$, due to the nearly identical atomic scattering factors of Se and Br . The existence of this phase was deduced from the occurrence of a peritectic line in the phase diagram.

The $\mathrm{Tl}_{5} X_{2} Y$ structure is isopuntal with the $\mathrm{Cr}_{5} B_{3}$ type. This structure type was frequently observed in the transition metal chemistry (14) among borides and silicides with radius ratios in the range $1.0-1.5$, permitting good packing of the atoms.

In contrast to the transition metal compounds of the $\mathrm{Cr}_{5} B_{3}$ type ($A_{5} B_{3}$) (14), in which the B atoms have a smaller size than the A atoms, the B atoms in the chalcogenides and chalcogide halides are larger. A plot (Fig. 8) of the axes ratios c / a vs the size ratios shows that for the $\mathrm{Cr}_{5} B_{3}$ branch. $r_{\mathrm{A}} / r_{\mathrm{B}}$ varies between 1.0 and 1.5 , while for the $\mathrm{Tl}_{5} \mathrm{Se}_{3}$ branch, the range lies between 0.68 and 0.86 . At the same time the c/a ratio decreases by approximately 25% for the latter compounds.

The close-packed layers at $z=0$ and $z=$ $1 / 2$ contain small B and large Cr atoms as part of the $\mathrm{Cr}_{5} B_{3}$ structure. These layers are strongly dilated if the B atoms (80 pm) are replaced by Se^{2-} ions (220 pm) and Cr $(119 \mathrm{pm})$ by $\mathrm{Tl}^{+}(140 \mathrm{pm})$. For geometric reasons the dilation in a is relatively larger than that of the c-axis. For the latter axis, this geometrical effect is partially compensated by the strong bonding between the unlike atoms on the fourfold sites (e.g., the $\mathrm{Tl}_{1}-\mathrm{I}$ in $\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{I}$ or the $\mathrm{Tl}_{1}-\mathrm{Se}$ bonds in $\mathrm{Tl}_{5} \mathrm{Se}_{3}$). This is indicated by the very short bonding distances in this direction. These

Fig. 8. Axial ratio c / a vs atomic-size ratio $r_{\mathrm{A}} / r_{\mathrm{B}}$ for phases with the $\mathrm{Tl}_{5} \mathrm{Se}_{3}$-type structure and some $\mathrm{Cr}_{5} B_{3}$ type structures.
are responsible for a relative contraction of c and therefore, for a reduced axial ratio c / a of these compounds. On comparison with the $\mathrm{Cr}_{5} B_{3}$ type, this leads to a change of coordination of the atoms. In particular the fourfold position (occupied by Se_{1} in $\mathrm{Tl}_{5} \mathrm{Se}_{3}$ respectively, by halide ions, in the $\mathrm{Tl}_{5} \mathrm{Se}_{2} X$ compounds) changes from a $8+2$ to a $2+8$ coordination. This means that the compounds of the main group elements $\mathrm{Tl}_{5} \mathrm{Se}_{3}$, $\mathrm{Tl}_{5} \mathrm{Te}_{3}$ (15), and $\mathrm{In}_{5} \mathrm{Bi}_{3}$ (16) rather than being isotypic with the $\mathrm{Cr}_{5} B_{3}$ type (as has been claimed), and the new $\mathrm{Tl}_{5} X_{2} Y$ series are actually isopuntal and form an individual branch of the $3^{2} 434$ structure type.

The strong relation between this family and the $\mathrm{Cr}_{5} B_{3}$ type is in addition, shown by the existence of the $\mathrm{Tl}_{5} \mathrm{Se}_{2} X$ type. The latter is the ordered ternary form of the $\mathrm{Tl}_{5} \mathrm{Se}_{3}$ type, comparable to $\mathrm{Mo}_{5} \mathrm{SiB}_{2}$ (17), which is a representative of the ordered form of the $\mathrm{Cr}_{5} B_{3}$ type.
The topology of the phase diagrams in the $\mathrm{Tl}_{2} \mathrm{Se}$ corner of the systems can be ascribed to the structure of $\mathrm{Tl}_{2} \mathrm{Se}$. The substitution of Se at the fourfold sites in $\mathrm{Tl}_{2} \mathrm{Se}$ by two halide ions occurs up to the composi-
tion $\mathrm{Tl}_{20} \mathrm{Se}_{9} X_{2}$ ($18 \mathrm{~mole} \% \mathrm{Tl} X$, the observed phase border of the solution in all systems) with a statistical distribution of the additional X^{-}ions. The formation of this solid solution is entropically controlled. Additional introduction of X^{-}ions leads to regions with ordered distribution of the X^{-}ions and thus to the segregation of the phase $\mathrm{Tl}_{5} \mathrm{Se}_{2} X$, it exhibits no appreciable homogeneity range.

The liquid immiscibility, as observed in the $\mathrm{Tl}_{2} \mathrm{Se}-\mathrm{TlCl}$ system and as indicated by the endothermic enthalpies of mixing in $\mathrm{Tl}_{2} \mathrm{Se}-\mathrm{TlBr}$, can also be recognized as occurring in the lattices of the chalcogenide halides. In $\mathrm{Tl}_{6} X_{4} Y(X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I} ; Y=\mathrm{S}, \mathrm{Se})$ strings of $\mathrm{Tl}_{2} Y$ are introduced in the $\mathrm{Tl} X$ lattice; in $\mathrm{Tl}_{5} Y_{2} X$ thallous halide strings are introduced in the $\mathrm{Tl}_{2} Y$ lattice. The short distances between unlike atoms in the compound $\mathrm{Tl}_{5} \mathrm{Se}_{2} \mathrm{I}$ indicate the existence of mainly covalent TII strings parallel to the fourfold axis, which are surrounded by $\mathrm{Tl}_{2} \mathrm{Se}$ "molecules."

Acknowledgments

We express our gratitude to the Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen and to the Fonds der Chemie for supporting this work.

References

1. R. Blachnik and H. A. Dreisbach, Z. Naturforsch. B 36, 1500-1503, (1981).
2. R. Blachnik and H. A. Dreisbach, and B. Engelen, Z. Naturforsch. B 38, 122-125 (1983).
3. M. M. Stasova and B. K. Vainshtein, Kristallografiya 3, 147 (1958).
4. A. Tausend and D. Wobig, Z. Phys. Chem. N.F. 96, 199-214 (1975).
5. B. Gather, Dissertation, TU Clausthal (1976).
6. R. Blachnik and F. W. Kasper, Z. Naturforsch. B 29, 159-162 (1974).
7. G. Samara, L. G. Walters, and D. A. Northrop, J. Phys. Chem. Solids 28, 1875 (1967).
8. L. Helmholz, Z. Kristallogr. 95, 129 (1936).
9. W. B. Pearson, "The Crystal Chemistry and

Physics of Metals and Alloys," Wiley-Interscience, New York (1972).
10. J. A. A. Ketelaar and E. W. Gorter, Z. Kristallogr. 100, 367-375 (1939).
11. J. A. A. Ketelaar, W. H. t’Hart, M. Moerel, and D. Polder, Z. Kristallogr. 101, 396-405 (1939).
12. M. C. Ball and A. H. Norbury, "Physical Data for Inorganic Chemistry," Longman, London (1974).
13. L. I. Man, V. S. Parmon, R. M. Imamov, and A. S. Avilov, Kristallografiya 25, 1070 (1980).
14. E. Parthé, B. Lux, and H. Nowotny, Monatsh. Chem. 86, 858 (1955).
15. L. I. Man, R. M. Imamov, and Z. G. Pinsker, Kristallografiya 16, 122 (1971).
16. R. Wang, B. C. Giessen, and N. J. Grant, Z. Kristallogr. 128, 244 (1969).
17. B. Aronsson, Acta Chem. Scand. 12, 31 (1958).

[^0]: ${ }^{a}$ Reflections indicated with an asterisk were not observed in $\mathrm{Tl}_{2} \mathrm{Se}$.

[^1]: ${ }^{1}$ Nomenclature as used by Pearson: underline, I atoms; double underline, Se atoms; 1 centering of squares in layer, 1 centering of antiprismatic holes between layers.

[^2]: ${ }^{a}$ The corresponding distances of $\mathrm{Tl}-\mathrm{Se}$ in $\mathrm{Tl}_{2} \mathrm{Se}$.

